|
|
A365638
|
|
Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.
|
|
0
|
|
|
1, 1, 1, 2, 4, 2, 8, 24, 24, 6, 64, 256, 384, 192, 24, 1024, 5120, 10240, 7680, 1920, 120, 32768, 196608, 491520, 491520, 184320, 23040, 720, 2097152, 14680064, 44040192, 55050240, 27525120, 5160960, 322560, 5040, 268435456, 2147483648, 7516192768, 11274289152, 7046430720, 1761607680, 165150720, 5160960, 40320
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
A tournament is a directed digraph obtained by assigning a direction for each edge in an undirected complete graph. In a transitive tournament all nodes can be strictly ordered by their reachability.
|
|
LINKS
|
|
|
FORMULA
|
T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2)).
T(n, n) = n!.
|
|
EXAMPLE
|
Triangle begins:
1
1, 1
2, 4, 2
8, 24, 24, 6
64, 256, 384, 192, 24
1024, 5120, 10240, 7680, 1920, 120
|
|
MAPLE
|
T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!:
seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Nov 02 2023
|
|
PROG
|
(PARI) T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2))
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|