login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(2/3).
5

%I #24 Nov 17 2023 11:20:24

%S 1,4,44,764,18204,551644,20291804,877970524,43680345564,2456429581404,

%T 154072160204764,10663000409493084,807124301044917724,

%U 66329628496719183964,5881222650127663682524,559616682597652939940444,56879286407092006924382684

%N Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(2/3).

%F a(n) = Sum_{k=0..n} 2^k * (Product_{j=0..k-1} (3*j+2)) * Stirling2(n,k) = Sum_{k=0..n} (Product_{j=0..k-1} (6*j+4)) * Stirling2(n,k).

%F a(0) = 1; a(n) = Sum_{k=1..n} (6 - 2*k/n) * binomial(n,k) * a(n-k).

%F O.g.f. (conjectural): 1/(1 - 4*x/(1 - 7*x/(1 - 10*x/(1 - 14*x/(1 - 16*x/(1 - 21*x/(1 - ... - (6*n - 2)*x/(1 - 7*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction). - _Peter Bala_, Sep 24 2023

%F a(n) ~ Gamma(1/3) * sqrt(3) * n^(n + 1/6) / (sqrt(2*Pi) * 7^(2/3) * exp(n) * log(7/6)^(n + 2/3)). - _Vaclav Kotesovec_, Nov 11 2023

%F a(0) = 1; a(n) = 4*a(n-1) - 7*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Nov 17 2023

%t a[n_] := Sum[Product[6*j + 4, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* _Amiram Eldar_, Sep 11 2023 *)

%o (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 6*j+4)*stirling(n, k, 2));

%Y Cf. A094419, A346985, A354252, A365555, A365557.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Sep 09 2023