login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365556
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(2/3).
5
1, 4, 44, 764, 18204, 551644, 20291804, 877970524, 43680345564, 2456429581404, 154072160204764, 10663000409493084, 807124301044917724, 66329628496719183964, 5881222650127663682524, 559616682597652939940444, 56879286407092006924382684
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 2^k * (Product_{j=0..k-1} (3*j+2)) * Stirling2(n,k) = Sum_{k=0..n} (Product_{j=0..k-1} (6*j+4)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (6 - 2*k/n) * binomial(n,k) * a(n-k).
O.g.f. (conjectural): 1/(1 - 4*x/(1 - 7*x/(1 - 10*x/(1 - 14*x/(1 - 16*x/(1 - 21*x/(1 - ... - (6*n - 2)*x/(1 - 7*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction). - Peter Bala, Sep 24 2023
a(n) ~ Gamma(1/3) * sqrt(3) * n^(n + 1/6) / (sqrt(2*Pi) * 7^(2/3) * exp(n) * log(7/6)^(n + 2/3)). - Vaclav Kotesovec, Nov 11 2023
a(0) = 1; a(n) = 4*a(n-1) - 7*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023
MATHEMATICA
a[n_] := Sum[Product[6*j + 4, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Sep 11 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 6*j+4)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 09 2023
STATUS
approved