login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365491
The number of divisors of the smallest number whose 4th power is divisible by n.
4
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
OFFSET
1,2
COMMENTS
First differs from A365210 at n = 25 and from A034444 at n = 32.
The number of divisors of the smallest 4th divisible by n, A053167(n), is A365492(n).
FORMULA
a(n) = A000005(A053166(n)).
Multiplicative with a(p^e) = ceiling(e/4) + 1.
a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^s - 1/p^(4*s)).
From Vaclav Kotesovec, Sep 06 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(4*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Sum_{k=1..n} a(k) ~ zeta(4) * f(1) * n * (log(n) + 2*gamma - 1 + 4*zeta'(4)/zeta(4) + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.57615273538566705952061107826411727540624711680289618854325028459572487...,
f'(1) = f(1) * Sum_{p prime} (-5 + 4*p + 2*p^3) * log(p) / (1 - p - p^3 + p^5) = f(1) * 1.3011434396559802378314782600747661399223385669839998680418996210...
and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = A322483(A019554(n)) (the number of exponentially odd divisors of the smallest number whose square is divisible by n). - Amiram Eldar, Sep 08 2023
MATHEMATICA
f[p_, e_] := Ceiling[e/4] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
With[{c=Range[100]^4}, Table[DivisorSigma[0, Surd[SelectFirst[c, Mod[#, n]==0&], 4]], {n, 90}]] (* Harvey P. Dale, Jul 09 2024 *)
PROG
(PARI) a(n) = vecprod(apply(x -> (x-1)\4 + 2, factor(n)[, 2]));
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 05 2023
STATUS
approved