login
A365473
Odd semiprimes p*q such that A000120(p)*A000120(q) = A000120(p*q).
1
15, 51, 85, 95, 111, 119, 123, 187, 219, 221, 335, 365, 411, 447, 485, 511, 629, 655, 685, 697, 771, 831, 879, 959, 965, 1011, 1139, 1241, 1285, 1405, 1535, 1563, 1649, 1731, 1779, 1799, 1923, 1983, 2005, 2019, 2031, 2045, 2227, 2605, 2735, 2815, 2827, 2885, 3099, 3183, 3279, 3281, 3291, 3327
OFFSET
1,1
COMMENTS
If p is an odd prime < 2^m and A365475(m) exists, then p * A365475(m) is a term. Thus, if A365475 is infinite, this sequence contains infinitely many multiples of every odd prime.
LINKS
EXAMPLE
a(3) = 85 is a term because 85 = 5 * 17 is an odd semiprime with A000120(5) * A000120(17) = 2 * 2 = 4 = A000120(85).
MAPLE
g:= proc(n) convert(convert(n, base, 2), `+`) end proc:
N:= 10^4: # for terms <= N
S:= NULL: p:= 2:
while 3*p <= N do
p:= nextprime(p);
t:= g(p);
q:= 2:
do
q:= nextprime(q);
if q = p or q*p > N then break fi;
if g(q)*t = g(p*q) then S:= S, p*q fi;
od od:
sort([S]);
CROSSREFS
Intersection of A001358 and A235040, and intersection of A001358 and A365451.
Sequence in context: A020144 A339880 A235040 * A075933 A075929 A337295
KEYWORD
nonn,base
AUTHOR
Robert Israel, Sep 04 2023
STATUS
approved