The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A365332 The sum of divisors of the largest square dividing n. 2
 1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 7, 31, 1, 13, 7, 1, 1, 1, 31, 1, 1, 1, 91, 1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 13, 1, 7, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 31, 7, 1, 1, 1, 31, 121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS All the terms are odd. The number of these divisors is A365331(n). The sum of divisors of the square root of the largest square dividing n is A069290(n). LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A000203(A008833(n)). a(n) = 1 if and only if n is squarefree (A005117). Multiplicative with a(p^e) = (p^(e + 1 - (e mod 2)) - 1)/(p - 1). Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(2*s-2) / zeta(4*s-2). Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 5*zeta(3/2)/Pi^2 = 1.323444812234... . MATHEMATICA f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] PROG (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1 - f[i, 2]%2) - 1)/(f[i, 1] - 1)); } CROSSREFS Cf. A000203, A005117, A008833, A069290, A078434, A365331. Sequence in context: A344696 A336457 A271498 * A367483 A348281 A317940 Adjacent sequences: A365329 A365330 A365331 * A365333 A365334 A365335 KEYWORD nonn,easy,mult AUTHOR Amiram Eldar, Sep 01 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 04:02 EDT 2024. Contains 372900 sequences. (Running on oeis4.)