login
The five digits of a(n) and their four successive absolute first differences are all distinct.
1

%I #18 Sep 03 2023 10:48:11

%S 14928,15829,17958,18259,18694,18695,19372,19375,19627,25917,27391,

%T 27398,28149,28749,28947,34928,35917,37289,37916,38926,39157,39578,

%U 43829,45829,47289,47916,49318,49681,49687,51869,53719,57391,57398,58926,59318,59681,59687,61973,61974,62983,62985,67958,68149,68749,68947,69157,69578,71952,71953,72691,72698,74619,74982,74986,75193,75196,76859,78259,78694,78695,81394,81395,81539,82941,82943,85179,85629,85971,85976,86749,87269,87593,87596,89372,89375,89627,91647,91735,92658,92834,92851,92854,93518,94182,94186,94768,94782,94786,95281,95287,95867,96278,96815,97158,98273,98274

%N The five digits of a(n) and their four successive absolute first differences are all distinct.

%C The digit 0 is never present in a(n) and never appears as a first difference (as this would duplicate in both cases one of the 8 remaining digits involved).

%C The sequence ends with a(96) = 98274.

%C The only prime numbers with this property are 39157, 49681, 51869, 53719, 62983, 68749, 68947, 75193, 78259, 89627 and 95287.

%e The five digits of a(1) = 14928 produce the four successive absolute first differences 3 (= 1 - 4), 5 (= 4 - 9), 7 (= 9 - 2) and 6 (= 2 - 8), resulting in nine distinct digits.

%e .1.4.9.2.8.

%e ..3.5.7.6..

%t Select[Range[10000,99999],Sort@Join[IntegerDigits@#, Abs@Differences@IntegerDigits@#]==Range@9&]

%Y Cf. A365258, A100787, A040114, A270263.

%K base,nonn,fini,full

%O 1,1

%A _Eric Angelini_ and _Giorgos Kalogeropoulos_, Aug 29 2023