|
|
A365257
|
|
The five digits of a(n) and their four successive absolute first differences are all distinct.
|
|
1
|
|
|
14928, 15829, 17958, 18259, 18694, 18695, 19372, 19375, 19627, 25917, 27391, 27398, 28149, 28749, 28947, 34928, 35917, 37289, 37916, 38926, 39157, 39578, 43829, 45829, 47289, 47916, 49318, 49681, 49687, 51869, 53719, 57391, 57398, 58926, 59318, 59681, 59687, 61973, 61974, 62983, 62985, 67958, 68149, 68749, 68947, 69157, 69578, 71952, 71953, 72691, 72698, 74619, 74982, 74986, 75193, 75196, 76859, 78259, 78694, 78695, 81394, 81395, 81539, 82941, 82943, 85179, 85629, 85971, 85976, 86749, 87269, 87593, 87596, 89372, 89375, 89627, 91647, 91735, 92658, 92834, 92851, 92854, 93518, 94182, 94186, 94768, 94782, 94786, 95281, 95287, 95867, 96278, 96815, 97158, 98273, 98274
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The digit 0 is never present in a(n) and never appears as a first difference (as this would duplicate in both cases one of the 8 remaining digits involved).
The sequence ends with a(96) = 98274.
The only prime numbers with this property are 39157, 49681, 51869, 53719, 62983, 68749, 68947, 75193, 78259, 89627 and 95287.
|
|
LINKS
|
|
|
EXAMPLE
|
The five digits of a(1) = 14928 produce the four successive absolute first differences 3 (= 1 - 4), 5 (= 4 - 9), 7 (= 9 - 2) and 6 (= 2 - 8), resulting in nine distinct digits.
.1.4.9.2.8.
..3.5.7.6..
|
|
MATHEMATICA
|
Select[Range[10000, 99999], Sort@Join[IntegerDigits@#, Abs@Differences@IntegerDigits@#]==Range@9&]
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn,fini,full
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|