login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365075
Decimal expansion of the initial irrational number of Cantor's diagonal argument: the k-th decimal digit of this constant is equal to the k-th decimal digit of A182972(k)/A182973(k).
0
5, 3, 0, 6, 0, 6, 0, 0, 2, 0, 0, 4, 0, 1, 8, 0, 2, 0, 5, 3, 0, 2, 3, 8, 0, 4, 0, 1, 2, 7, 5, 7, 3, 6, 0, 6, 2, 5, 7, 0, 3, 5, 3, 6, 5, 0, 8, 7, 3, 3, 5, 6, 0, 6, 8, 6, 3, 2, 0, 1, 2, 3, 8, 0, 9, 3, 0, 1, 9, 6, 6, 4, 6, 9, 5, 2, 0, 6, 7, 2, 0, 3, 5, 0, 6, 9, 2, 0, 5
OFFSET
0,1
REFERENCES
Andrew Hodges, Alan Turing: The Enigma, Princeton University Press, 2014. See p. 153.
EXAMPLE
0.5306060020040180205392380401375136062570353650803356... whose decimal expansion is given by the decimal digits on the diagonal of the list of rational numbers given by A182972 and A182973:
.5000000000000000000...
.3333333333333333333...
.2500000000000000000...
.6666666666666666667...
.2000000000000000000...
.1666666666666666667...
.4000000000000000000...
.7500000000000000000...
.1428571428571428571...
.6000000000000000000...
.1250000000000000000...
.2857142857142857143...
.8000000000000000000...
.1111111111111111111...
.4285714285714285714...
.1000000000000000000...
...
MATHEMATICA
t1={}; For[n=2, n <= 24, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; (* A182972/A182973 *)
a={}; For[i=1, i<Length[t1], i++, AppendTo[a, Mod[Floor[10^i*Part[Rest[t1], i]], 10]]]; a
PROG
(Python)
from itertools import count, islice
from math import gcd
def A365075_gen(): # generator of terms
c = 1
for n in count(2):
for i in range(1, 1+(n-1>>1)):
if gcd(i, n-i)==1:
c *= 10
yield (i*c//(n-i))%10
A365075_list = list(islice(A365075_gen(), 30)) # Chai Wah Wu, Aug 28 2023
CROSSREFS
Sequence in context: A374172 A350550 A232225 * A200126 A065469 A249522
KEYWORD
nonn,base,cons,easy
AUTHOR
Stefano Spezia, Aug 20 2023
EXTENSIONS
Data checked by Chai Wah Wu and corrected by Stefano Spezia, Aug 29 2023
STATUS
approved