login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364941
E.g.f. satisfies A(x) = exp( x*A(x)^2 / (1 - x*A(x))^2 ).
2
1, 1, 9, 139, 3201, 98861, 3842653, 180342471, 9926870145, 627296384665, 44766115252821, 3561306199330859, 312531347680052449, 29994317717748851013, 3125271184480991706189, 351360521075659460743471, 42395667639523579933634817, 5464885215245368415146646321
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(n+k-1,n-k)/k!.
a(n) ~ s^2 * sqrt((1 + r*s)/(1 + 2*r*s^2 - 3*r^2*s^2 + 2*r^3*s^3)) * n^(n-1) / (exp(n) * r^(n - 1/2)), where r = 0.1208150626316801846776206051780724146363... and s = 1.505405324736640697527292770220289316454393380356... are real roots of the system of equations exp(r*s^2 / (1 - r*s)^2) = s, 2*r*s^2 = (1 - r*s)^3. - Vaclav Kotesovec, Nov 18 2023
MATHEMATICA
Join[{1}, Table[n! * Sum[(n+k+1)^(k-1) * Binomial[n+k-1, n-k]/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(n+k-1, n-k)/k!);
CROSSREFS
Sequence in context: A322576 A350925 A243673 * A294117 A266634 A092652
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 14 2023
STATUS
approved