OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(n+k-1,n-k)/k!.
a(n) ~ s^2 * sqrt((1 + r*s)/(1 + 2*r*s^2 - 3*r^2*s^2 + 2*r^3*s^3)) * n^(n-1) / (exp(n) * r^(n - 1/2)), where r = 0.1208150626316801846776206051780724146363... and s = 1.505405324736640697527292770220289316454393380356... are real roots of the system of equations exp(r*s^2 / (1 - r*s)^2) = s, 2*r*s^2 = (1 - r*s)^3. - Vaclav Kotesovec, Nov 18 2023
MATHEMATICA
Join[{1}, Table[n! * Sum[(n+k+1)^(k-1) * Binomial[n+k-1, n-k]/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 18 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(n+k-1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 14 2023
STATUS
approved