OFFSET
2,1
COMMENTS
Setting the generalized hypervolume formula equal to the surface hypervolume formula and solving for the side length x (and ignoring the x = 0 solution, as it would correspond to a simplex consisting of only a single point) gives x = sqrt(2*(n^3)*(n+1)).
LINKS
Harvey P. Dale, Table of n, a(n) for n = 2..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 2*n^3*(n+1) = 2*A179824(n+1).
From Stefano Spezia, Apr 13 2024: (Start)
G.f.: 4*x^2*(12 - 6*x + 10*x^2 - 5*x^3 + x^4)/(1 - x)^5.
a(n) = 4*A019582(n+1). (End)
MATHEMATICA
Table[2*n^3*(n + 1), {n, 2, 50}] (* Paolo Xausa, Apr 18 2024 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {48, 216, 640, 1500, 3024}, 40] (* Harvey P. Dale, Aug 27 2024 *)
PROG
(Python)
def a(n): return 2 * n**3 * (n + 1)
print([a(n) for n in range(2, 50)])
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Matt Moir, Apr 13 2024
STATUS
approved