login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A364782 Order of the general symplectic group of 6 X 6 matrices over Z_n. 1
1, 1451520, 18341406720, 6088116142080, 1828008000000000, 26622918682214400, 3281486623259443200, 25535409887190712320, 575572777593233172480, 2653390172160000000000, 73385854415869121280000, 111664614320486586777600, 2947127504061746732912640, 4763143463393546993664000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let M be any fixed nonsingular skew-symmetric 6 X 6 matrix over the integers mod n. Then a(n) is the number of invertible 6 X 6 matrices A over the integers mod n such that A^T * M * A = c*M for some nonzero constant c (mod n), where A^T denotes the transpose of A.
LINKS
Hanson Smith, Frobenius finds non-monogenic division fields of abelian varieties, Int. J. Number Theory 18 (2022), no. 10, 2299-2315.
FORMULA
a(n) = Product_{primes p dividing n} p^(22*v_p(n) - 13)*(p - 1)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1), where v_p(n) is the largest power k such that p^k divides n.
Sum_{k=1..n} a(k) ~ c * n^23 / 23, where c = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6 + 1/p^9 - 1/p^10 + 1/p^11 - 1/p^12 - 1/p^13 + 1/p^14) = 0.5228053524... . - Amiram Eldar, Aug 08 2023
MATHEMATICA
f[p_, e_] := p^(22*e - 13)*(p - 1)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 15] (* Amiram Eldar, Aug 08 2023 *)
PROG
(Sage)
def a(n):
return product([p^(22*n.valuation(p)-13)*(p-1)*(p^2-1)*(p^4-1)*(p^6-1)
for p in n.prime_factors()])
CROSSREFS
Sequence in context: A003939 A364783 A003932 * A205044 A237314 A263071
KEYWORD
nonn,mult
AUTHOR
Robin Visser, Aug 07 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:20 EST 2023. Contains 367600 sequences. (Running on oeis4.)