OFFSET
1,2
COMMENTS
As found by Brunnbauer (2019), if a period doubling occurs at n, then a(n) is of the form AB, where B is the inverse of A. Additionally, the number of trailing zeros of a(n) increases by one when n is even.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..25
Michael Brunnbauer, Diagonals in elementary cellular automaton 30, 2019 (local PDF copy, with author's permission).
Eric S. Rowland, Local Nested Structure in Rule 30, Complex Systems 16 (2006), pp. 239-258.
Eric Weisstein's World of Mathematics, Rule 30.
Stephen Wolfram, Notes on chapter 2, Rule 30, from A new kind of science online, Wolfram Media, 2002.
EXAMPLE
In the following diagram, showing the first 20 evolution steps of the CA, two diagonals are highlighted (the rest of the CA is represented by hyphens, for better visualization).
.
2nd diagonal
a(2) = 10 __
\-
7th diagonal __ -1-
a(7) = 1010011101011000 \ ---0-
1----1-
--0----0-
----1----1-
------0----0-
--------0----1-
----------1----0-
------------1----1-
--------------1----0-
----------------0----1-
------------------1----0-
--------------------0----1-
----------------------1----0-
------------------------1----1-
--------------------------0----0-
----------------------------0----1-
------------------------------0----0-
--------------------------------1----1-
----------------------------------0----0-
.
MATHEMATICA
A364773list[steps_]:=Module[{d=2Ceiling[Log2[steps]], ca, n=1, p, plen, a={1}}, ca=CellularAutomaton[30, {{1}, 0}, {steps, {1-d, steps}}]; While[++n<=2(d-1)&&(plen=Length[p=FindRepeat[Flatten[Rest[Split[Diagonal[ca, d-n]]]]]])>=IntegerLength[Last[a]]&&IntegerQ[Log2[plen]], AppendTo[a, FromDigits[p]]]; a];
A364773list[80] (* Analyzes 80 evolution steps *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paolo Xausa, Aug 06 2023
STATUS
approved