login
A364726
Admirable numbers with more divisors than any smaller admirable number.
0
12, 24, 84, 120, 672, 24384, 43065, 78975, 81081, 261261, 523776, 9124731, 13398021, 69087249, 91963648, 459818240, 39142675143, 51001180160
OFFSET
1,1
COMMENTS
The corresponding numbers of divisors are 6, 8, 12, 16, 24, 28, 32, 36, 40, 48, 80, 90, 96, 120, 144, 288, 360, 480, ... .
If there are infinitely many even perfect numbers (A000396), then this sequence is infinite, because if p is a Mersenne prime exponent (A000043) and q is an odd prime that does not divide 2^p-1, then 2^(p-1)*(2^p-1)*q is an admirable number with 4*p divisors (see A165772).
a(19) > 10^11.
MATHEMATICA
admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
PROG
(PARI) isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0; }
lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k, ", "))); }
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 05 2023
STATUS
approved