OFFSET
1,2
COMMENTS
Here phi is Euler totient function and psi is the Dedekind psi function.
psi(phi(1)) = 1, and psi(phi(3)) = 3. Each term of the sequence is evaluated by calling psi(phi(x)) (beginning at x = n) repeatedly until psi(phi(x)) = x. a(n) is then the number of iterations.
If n = 3*2^k then a(n) = k+1. Hence for any x, should x = 3*2^k then the process terminates.
If n = 2^k for k >= 2 then a(n) = k.
See A364631 for additional comments.
FORMULA
a(2^k) = A003434(2^k) = k, k >= 2.
EXAMPLE
a(1) = 1 since psi(phi(1)) = 1.
a(2) = 2 since psi(phi(2)) = 1, and psi(phi(1)) = 1.
a(5) = 3 since psi(phi(5)) = 6, psi(phi(6)) = 3, and psi(phi(3)) = 3.
a(9) = 4 since psi(phi(9)) = 12, psi(phi(12)) = 4, psi(phi(4)) = 3, and psi(phi(3)) = 3.
MATHEMATICA
psi[n_] := n*Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; a[n_] := -1 + Length@ FixedPointList[psi[EulerPhi[#]] &, n]; Array[a, 100] (* Amiram Eldar, Aug 04 2023 *)
PROG
(Python)
from sympy.ntheory.factor_ import totient
from sympy import isprime, primefactors, prod
def psi(n):
plist = primefactors(n)
return n*prod(p+1 for p in plist)//prod(plist)
def a(n):
i = 1
r = n
while (True):
rc = psi(totient(r))
if (rc == r):
break;
r = rc
i += 1
return i
(PARI) dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = my(k=0, m); while (1, m=dpsi(eulerphi(n)); k++; if (m ==n, return(k)); n=m); \\ Michel Marcus, Aug 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Torlach Rush, Jul 30 2023
STATUS
approved