login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364415
a(n) is the least k such that Sum_{j=1..k} 1/(j^(1 + 1/j)) >= n.
0
0, 1, 6, 22, 65, 185, 512, 1402, 3825, 10412, 28318, 76995, 209314, 568995, 1546713, 4204428, 11428848, 31066858, 84448506, 229554871, 623994868, 1696193945, 4610733216, 12533272358, 34068966559
OFFSET
0,3
COMMENTS
As Sum_{j=1..k} 1/(j^(1 + 1/j)) diverges this sequence is well-defined.
REFERENCES
R. P. Boas, Growth of partial sums of divergent series, Mathematics of Computation, 31 (1977), 257-264.
LINKS
Michael Penn, A notorious Calculus problem, YouTube video, 2023.
FORMULA
a(n) >= A004080(n).
Conjecture: Limit_{n->oo} a(n)/a(n-1) = e. - Hugo Pfoertner, Jul 29 2023
EXAMPLE
Let f(m) = Sum_{j=1..m} 1/(j^(1 + 1/j)) and n = 2. Then 1.906406... f(5) < n = 2 <= f(6) = 2.030045839... . So 6 is the smallest m such that f(m) >= 2. Therefore a(2) = 6.
MATHEMATICA
a={0}; sum=0; k=1; For[n=1, n<=8, n++, While[ sum<=n, If[(sum+=1/(k^(1+1/k)))>=n, AppendTo[a, k]]; k++]]; a (* Stefano Spezia, Jul 24 2023 *)
PROG
(PARI) a(n) = if(n == 0, return(0)); my(t = 0); for(i = 1, oo, t+= 1/(i^(1+1/i)); if(t >= n, return(i)))
CROSSREFS
Sequence in context: A099855 A347435 A003469 * A189418 A027992 A271389
KEYWORD
nonn,more
AUTHOR
David A. Corneth, Jul 23 2023
EXTENSIONS
a(13)-a(18) from Hugo Pfoertner, Jul 29 2023
a(19)-a(24) from Sela Fried, Jul 03 2024
STATUS
approved