login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364390
Triangle T(n, k) based on A176040 which read by rows yields a permutation of the positive integers.
1
1, 3, 2, 8, 7, 4, 10, 9, 6, 5, 19, 18, 15, 14, 11, 21, 20, 17, 16, 13, 12, 34, 33, 30, 29, 26, 25, 22, 36, 35, 32, 31, 28, 27, 24, 23, 53, 52, 49, 48, 45, 44, 41, 40, 37, 55, 54, 51, 50, 47, 46, 43, 42, 39, 38, 76, 75, 72, 71, 68, 67, 64, 63, 60, 59, 56, 78, 77, 74, 73, 70, 69, 66, 65, 62, 61, 58, 57
OFFSET
1,2
FORMULA
T(n, k) = n*(n+1)/2 + (n-1)*(n mod 2) - 2*k + 3 - (k mod 2) for 1 <= k <= n.
T(n, 1) = n*(n+1)/2 + (n-1)*(n mod 2) for n > 0.
T(2*n, 1) = A000217(2*n) for n > 0.
T(n, k) - T(n, k+1) = A176040(k) for k > 0.
T(n, k) = T(n-1, k) + T(n, k-1) - T(n-1, k-1) for 1 < k < n.
T(2*n, k) - T(2*n-1, k) = 2 for 1 <= k < 2*n.
Row sums: A006003(n) - (-1)^n * 2 * floor((n-1)/2) * (1 + floor((n-1)/2)) for n > 0. - Werner Schulte, Dec 03 2023
EXAMPLE
Triangle T(n, k) for 1 <= k <= n begins:
n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
==========================================================================
01 : 1
02 : 3 2
03 : 8 7 4
04 : 10 9 6 5
05 : 19 18 15 14 11
06 : 21 20 17 16 13 12
07 : 34 33 30 29 26 25 22
08 : 36 35 32 31 28 27 24 23
09 : 53 52 49 48 45 44 41 40 37
10 : 55 54 51 50 47 46 43 42 39 38
11 : 76 75 72 71 68 67 64 63 60 59 56
12 : 78 77 74 73 70 69 66 65 62 61 58 57
13 : 103 102 99 98 95 94 91 90 87 86 83 82 79
14 : 105 104 101 100 97 96 93 92 89 88 85 84 81 80
etc.
PROG
(PARI) T(n, k) = n*(n+1)/2 + (n-1)*(n%2) - 2*k + 3 - (k%2)
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jul 21 2023
STATUS
approved