login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364268
a(n) = Sum_{k=1..n} k^2*sigma_2(k), where sigma_2 is A001157.
2
1, 21, 111, 447, 1097, 2897, 5347, 10787, 18158, 31158, 45920, 76160, 104890, 153890, 212390, 299686, 383496, 530916, 661598, 879998, 1100498, 1395738, 1676108, 2165708, 2572583, 3147183, 3744963, 4568163, 5276285, 6446285, 7370767, 8768527, 10097107
OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} k^4 * A000330(floor(n/k)).
a(n) ~ (zeta(3)/5) * n^5. - Amiram Eldar, Oct 20 2023
MATHEMATICA
Accumulate[Table[n^2*DivisorSigma[2, n], {n, 1, 33}]] (* Amiram Eldar, Oct 20 2023 *)
PROG
(PARI) f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
a(n, s=2, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
(Python)
def A364268(n): return sum(k**4*(m:=n//k)*(m+1)*((m<<1)+1)//6 for k in range(1, n+1)) # Chai Wah Wu, Oct 20 2023
(Python)
from math import isqrt
def A364268(n): return (((s:=isqrt(n))*(s+1)*(2*s+1))**2*(1-3*s*(s+1))//6 + sum((q:=n//k)*(q+1)*(2*q+1)*k**2*(5*k**2+3*q*(q+1)-1) for k in range(1, s+1)))//30 # Chai Wah Wu, Oct 21 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 20 2023
STATUS
approved