login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363929
Expansion of Sum_{k>0} x^(4*k) / (1 - x^(5*k))^2.
4
0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 3, 0, 1, 0, 2, 4, 1, 0, 0, 0, 6, 0, 0, 2, 4, 6, 0, 0, 1, 0, 7, 0, 3, 0, 4, 8, 1, 0, 3, 0, 10, 2, 0, 0, 6, 10, 0, 0, 1, 0, 13, 0, 4, 4, 6, 12, 1, 0, 0, 2, 14, 0, 0, 0, 8, 14, 3, 0, 8, 0, 15, 0, 5, 0, 8, 16, 1, 2, 0, 0, 21, 0, 0, 6, 10, 18, 2, 0, 1, 0, 19, 4, 6, 0, 13, 22, 1, 0, 7, 0, 22, 0, 0, 0, 14, 22, 0, 0
OFFSET
1,9
LINKS
FORMULA
a(n) = (1/5) * Sum_{d|n, d==4 mod 5} (d+1) = (A001899(n) + A284103(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-1) / (1 - x^(5*k-1)).
MATHEMATICA
a[n_] := DivisorSum[n, # + 1 &, Mod[#, 5] == 4 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%5==4)*(d+1))/5;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 28 2023
STATUS
approved