login
A306605
Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: for any m >= 0, let f_m be the representation of m in the factorial number system: for any i >= 0, 0 <= f_m(i) <= i and m = Sum_{i >= 0} f_m(i) * i!; the representation of T(n, k) in the factorial number system, say g, satisfies g(i) = f_n(f_k(i)) for any i >= 0.
1
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 3, 2, 1, 0, 0, 0, 2, 0, 2, 2, 6, 0, 0, 1, 0, 3, 4, 3, 0, 7, 0, 0, 0, 2, 0, 4, 4, 6, 0, 8, 0, 0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 0, 0, 2, 0, 0, 0, 6, 0, 8, 0, 6, 0, 0, 1, 0, 3, 2, 1, 0, 7, 0
OFFSET
0,9
COMMENTS
Each column is periodic.
FORMULA
For any m, n, k >= 0:
- T(n, 0) = T(0, k) = 0 (0 is an absorbing element),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, n) = A306584(n).
EXAMPLE
Array T(n, k) begins (in decimal):
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+----------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 3 0 1 6 7 8 9 6
2| 0 0 0 0 2 2 0 0 0 0 2
3| 0 1 2 3 2 3 6 7 8 9 8
4| 0 0 0 0 4 4 0 0 0 0 4
5| 0 1 2 3 4 5 6 7 8 9 10
6| 0 0 0 0 0 0 0 0 0 0 0
7| 0 1 2 3 0 1 6 7 8 9 6
8| 0 0 0 0 2 2 0 0 0 0 2
9| 0 1 2 3 2 3 6 7 8 9 8
10| 0 0 0 0 4 4 0 0 0 0 4
Array T(n, k) begins (in factorial base):
n\k| 0 10 100 110 200 210 1000 1010 1100 1110 1200
----+----------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
10| 0 10 100 110 0 10 1000 1010 1100 1110 1000
100| 0 0 0 0 100 100 0 0 0 0 100
110| 0 10 100 110 100 110 1000 1010 1100 1110 1100
200| 0 0 0 0 200 200 0 0 0 0 200
210| 0 10 100 110 200 210 1000 1010 1100 1110 1200
1000| 0 0 0 0 0 0 0 0 0 0 0
1010| 0 10 100 110 0 10 1000 1010 1100 1110 1000
1100| 0 0 0 0 100 100 0 0 0 0 100
1110| 0 10 100 110 100 110 1000 1010 1100 1110 1100
1200| 0 0 0 0 200 200 0 0 0 0 200
PROG
(PARI) T(n, k) = my (v=0, fn=[]); for (r=1, oo, if (k==0, return (v), fn = concat(fn, n%r); v += fn[1+(k%r)] * (r-1)!; n \= r; k \= r))
CROSSREFS
Cf. A007623, A306584 (main diagonal).
Sequence in context: A164615 A182034 A171912 * A363929 A054876 A109502
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Feb 27 2019
STATUS
approved