OFFSET
0,9
COMMENTS
Each column is periodic.
LINKS
FORMULA
For any m, n, k >= 0:
- T(n, 0) = T(0, k) = 0 (0 is an absorbing element),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, n) = A306584(n).
EXAMPLE
Array T(n, k) begins (in decimal):
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+----------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 3 0 1 6 7 8 9 6
2| 0 0 0 0 2 2 0 0 0 0 2
3| 0 1 2 3 2 3 6 7 8 9 8
4| 0 0 0 0 4 4 0 0 0 0 4
5| 0 1 2 3 4 5 6 7 8 9 10
6| 0 0 0 0 0 0 0 0 0 0 0
7| 0 1 2 3 0 1 6 7 8 9 6
8| 0 0 0 0 2 2 0 0 0 0 2
9| 0 1 2 3 2 3 6 7 8 9 8
10| 0 0 0 0 4 4 0 0 0 0 4
Array T(n, k) begins (in factorial base):
n\k| 0 10 100 110 200 210 1000 1010 1100 1110 1200
----+----------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
10| 0 10 100 110 0 10 1000 1010 1100 1110 1000
100| 0 0 0 0 100 100 0 0 0 0 100
110| 0 10 100 110 100 110 1000 1010 1100 1110 1100
200| 0 0 0 0 200 200 0 0 0 0 200
210| 0 10 100 110 200 210 1000 1010 1100 1110 1200
1000| 0 0 0 0 0 0 0 0 0 0 0
1010| 0 10 100 110 0 10 1000 1010 1100 1110 1000
1100| 0 0 0 0 100 100 0 0 0 0 100
1110| 0 10 100 110 100 110 1000 1010 1100 1110 1100
1200| 0 0 0 0 200 200 0 0 0 0 200
PROG
(PARI) T(n, k) = my (v=0, fn=[]); for (r=1, oo, if (k==0, return (v), fn = concat(fn, n%r); v += fn[1+(k%r)] * (r-1)!; n \= r; k \= r))
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Feb 27 2019
STATUS
approved