login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306605
Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: for any m >= 0, let f_m be the representation of m in the factorial number system: for any i >= 0, 0 <= f_m(i) <= i and m = Sum_{i >= 0} f_m(i) * i!; the representation of T(n, k) in the factorial number system, say g, satisfies g(i) = f_n(f_k(i)) for any i >= 0.
1
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 3, 2, 1, 0, 0, 0, 2, 0, 2, 2, 6, 0, 0, 1, 0, 3, 4, 3, 0, 7, 0, 0, 0, 2, 0, 4, 4, 6, 0, 8, 0, 0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 0, 0, 2, 0, 0, 0, 6, 0, 8, 0, 6, 0, 0, 1, 0, 3, 2, 1, 0, 7, 0
OFFSET
0,9
COMMENTS
Each column is periodic.
FORMULA
For any m, n, k >= 0:
- T(n, 0) = T(0, k) = 0 (0 is an absorbing element),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, n) = A306584(n).
EXAMPLE
Array T(n, k) begins (in decimal):
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+----------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 3 0 1 6 7 8 9 6
2| 0 0 0 0 2 2 0 0 0 0 2
3| 0 1 2 3 2 3 6 7 8 9 8
4| 0 0 0 0 4 4 0 0 0 0 4
5| 0 1 2 3 4 5 6 7 8 9 10
6| 0 0 0 0 0 0 0 0 0 0 0
7| 0 1 2 3 0 1 6 7 8 9 6
8| 0 0 0 0 2 2 0 0 0 0 2
9| 0 1 2 3 2 3 6 7 8 9 8
10| 0 0 0 0 4 4 0 0 0 0 4
Array T(n, k) begins (in factorial base):
n\k| 0 10 100 110 200 210 1000 1010 1100 1110 1200
----+----------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
10| 0 10 100 110 0 10 1000 1010 1100 1110 1000
100| 0 0 0 0 100 100 0 0 0 0 100
110| 0 10 100 110 100 110 1000 1010 1100 1110 1100
200| 0 0 0 0 200 200 0 0 0 0 200
210| 0 10 100 110 200 210 1000 1010 1100 1110 1200
1000| 0 0 0 0 0 0 0 0 0 0 0
1010| 0 10 100 110 0 10 1000 1010 1100 1110 1000
1100| 0 0 0 0 100 100 0 0 0 0 100
1110| 0 10 100 110 100 110 1000 1010 1100 1110 1100
1200| 0 0 0 0 200 200 0 0 0 0 200
PROG
(PARI) T(n, k) = my (v=0, fn=[]); for (r=1, oo, if (k==0, return (v), fn = concat(fn, n%r); v += fn[1+(k%r)] * (r-1)!; n \= r; k \= r))
CROSSREFS
Cf. A007623, A306584 (main diagonal).
Sequence in context: A164615 A182034 A171912 * A363929 A054876 A109502
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Feb 27 2019
STATUS
approved