login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363381
a(n) is the number of distinct n-cell patterns that tile an n X n square.
1
1, 2, 1, 60, 1, 102, 1, 62714
OFFSET
1,2
COMMENTS
Consider n unit squares contained within an n X n square. The n unit squares are an n-cell pattern of the n X n square if, when copied n-1 times, they can, with various rigid transformations, be combined to tessellate the n X n square.
Put another way:
Consider, for example, for n = 4, a transparency with an outline of a 4 X 4 square filled by 16 unit squares. Any 4 unit squares are painted the same color. Those four squares are a potential n-cell pattern of the 4 X 4 square. Three copies of the transparency are made with only the color of the 4 squares being different. If a person can stack the transparencies in such a way that they fill the 4 X 4 square, then the n-cell pattern is acceptable.
Put another way:
n unit squares from an n X n square are painted a color. Those n unit squares are an n-cell pattern. If n-1 copies of the pattern can be painted (each a different color) and together they fill the n X n square, then the n unit squares form an acceptable n-cell pattern.
Conjecture by Andrew Young: For an n X n square, where n is an odd prime, there is only one n-cell pattern.
Conjecture by Andrew Young and Thomas Young: An odd integer n>=3 is prime iff there exists only one n-cell pattern for an n X n square.
For composite numbers n, an n X n square will always have at least two n-cell patterns: a 1 X n pattern and an f1 X f2 pattern, where 1 < f1 <= f2 < n and f1*f2 = n. For example, a 14 X 14 square can be tiled using fourteen 1 X 14 rectangles or fourteen 2 X 7 rectangles; a 15 X 15 square can be tiled using fifteen 1 X 15 rectangles or fifteen 3 X 5 rectangles; a 9 X 9 square can be tiled using nine 1 X 9 rectangles or nine 3 X 3 squares (as in Sudoku!).
For prime numbers p, a p X p square can always be tessellated with p rectangles that are 1 X p.
EXAMPLE
For n = 1, there is one 1-cell pattern because there is only one unit square to paint.
For n = 2, there are two 2-cell patterns:
+---+---+ +---+---+ +---+
| 1 | 2 | | 1 | 2 | | 1 |
+---+---+ +---+---+ and +---+---+
| 3 | 4 | | 4 |
+---+---+ +---+
For n = 3, there is one 3-cell pattern:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 | it is +---+---+---+
+---+---+---+ | 1 | 2 | 3 |
| 7 | 8 | 9 | +---+---+---+
+---+---+---+
For n = 4, there are sixty 4-cell patterns:
+---+---+---+---+
| 1 | 2 | 3 | 4 |
+---+---+---+---+
| 5 | 6 | 7 | 8 | one is +---+---+---+---+
+---+---+---+---+ | 1 | 2 | 3 | 4 |
| 9 |10 |11 |12 | +---+---+---+---+
+---+---+---+---+
|13 |14 |15 |16 |
+---+---+---+---+
+---+---+---+---+ +---+
| 1 | 2 | 3 | 4 | is equivalent to | 1 |
+---+---+---+---+ +---+
| 5 |
+---+
| 9 |
+---+
|13 |
+---+
and therefore is counted as one pattern.
Another 4-cell pattern for a 4 X 4
+---+---+---+---+
| x | x | y | y |
+---+---+---+---+
| z | y | x | a | is +---+---+
+---+---+---+---+ | x | x |
| y | z | a | x | +---+---+---+
+---+---+---+---+ | x |
| a | a | z | z | +---+---+
+---+---+---+---+ | x |
+---+
+---+---+
| x | x |
+---+---+---+ is equivalent to
| x |
+---+---+
| x |
+---+
+---+---+ +---+ +---+
| y | y | | z | | a |
+---+---+---+ +---+---+ +---+---+
| y | | z | | a |
+---+---+ +---+---+---+ +---+---+---+
| y | | z | z | | a | a |
+---+ +---+---+ +---+---+
because the shapes can be created through reflection, rotation, or translation.
Therefore, they are counted as one pattern.
For n = 5, there is one 5-cell pattern.
KEYWORD
nonn,more,hard
AUTHOR
Thomas Young, May 30 2023
EXTENSIONS
a(7)-a(8) from Andrew Howroyd, Jun 04 2023
STATUS
approved