OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
G.f.: A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = 1 + x*(A(x)^4 + A(x)^7).
(2) a(n) = Sum_{k=0..n} binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + 1516963346*x^8 + 36056007602*x^9 + ...
where A(x) = 1 + x*(A(x)^4 + A(x)^7).
RELATED SERIES.
A(x)^4 = 1 + 8*x + 112*x^2 + 1960*x^3 + 38528*x^4 + 813064*x^5 + 17998512*x^6 + 412364968*x^7 + ...
A(x)^7 = 1 + 14*x + 238*x^2 + 4578*x^3 + 95130*x^4 + 2082150*x^5 + 47295990*x^6 + 1104598378*x^7 + ...
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) )}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 29 2023
STATUS
approved