login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363286
Odd primes p such that the congruence 2^x == 1 (mod p) has no solution for 0 < x < (p - 1)/2.
0
3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 97, 101, 103, 107, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 239, 263, 269, 271, 293, 311, 313, 317, 347, 349, 359, 367, 373, 379, 383, 389, 401, 409, 419
OFFSET
1,1
COMMENTS
An odd prime p belongs to this sequence if and only if A001917(A000720(p)) is equal to 1 or 2.
FORMULA
a(n) ~ (3/2)*n*log((3/2)*n).
PROG
(Magma) [p: p in [3..419 by 2] | IsPrime(p) and (p-1)/Modorder(2, p) le 2];
(PARI) isok(p) = p%2 && isprime(p) && (p-1)/znorder(Mod(2, p))<=2;
(Python)
from itertools import islice
from sympy import nextprime, n_order
def A363286_gen(startvalue=3): # generator of terms >= startvalue
p = max(startvalue, 3)-1
while (p:=nextprime(p)):
if n_order(2, p)<<1 >= p-1:
yield p
A363286_list = list(islice(A363286_gen(), 30)) # Chai Wah Wu, Jul 17 2023
CROSSREFS
Sequence in context: A130101 A130057 A226181 * A120637 A278454 A378018
KEYWORD
nonn
AUTHOR
STATUS
approved