Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jun 14 2023 18:41:49
%S 3,7,10,11,17,31,41,71,169,199,263,337,367,1553,2129,2287,2297,4351,
%T 10433,16391,16433,34829,65543,69557,165887,262151,358481,817153,
%U 952319,1048583,3704737,3932167,4518071,12582919,17305417,17367019,50069497,50593799,87228517
%N Lexicographically first sequence of positive integers such that all terms are pairwise coprime and no subset sum is a power of 2.
%H Jon E. Schoenfield, <a href="/A363245/a363245.txt">Magma program</a> (computes first 36 terms).
%t a = {3}; k = 2; Monitor[Do[While[Or[! Apply[CoprimeQ, Join[a, {k}]], AnyTrue[Map[Log2 @* Total@ Append[#, k] &, Subsets[a]], IntegerQ]], k++]; AppendTo[a, k]; k++, {i, 16}], {i, k}]; a (* _Michael De Vlieger_, Jun 14 2023 *)
%o (Python)
%o from math import gcd
%o from itertools import count, islice
%o def agen(): # generator of terms
%o a, ss, pows2, m = [], set(), {1, 2}, 2
%o for k in count(1):
%o if k in pows2: continue
%o elif k > m: m <<= 1; pows2.add(m)
%o if any(p2-k in ss for p2 in pows2): continue
%o if any(gcd(ai, k) != 1 for ai in a): continue
%o a.append(k); yield k
%o ss |= {k} | {k+si for si in ss if k+si not in ss}
%o while m < max(ss): m <<= 1; pows2.add(m)
%o print(list(islice(agen(), 30))) # _Michael S. Branicky_, Jun 09 2023
%Y Cf. A353889.
%K nonn
%O 1,1
%A _Julian Zbigniew Kuryllowicz-Kazmierczak_, May 23 2023
%E a(23)-a(33) from _Michael S. Branicky_, Jun 07 2023
%E a(34)-a(39) from _Jon E. Schoenfield_, Jun 09 2023