login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363245
Lexicographically first sequence of positive integers such that all terms are pairwise coprime and no subset sum is a power of 2.
1
3, 7, 10, 11, 17, 31, 41, 71, 169, 199, 263, 337, 367, 1553, 2129, 2287, 2297, 4351, 10433, 16391, 16433, 34829, 65543, 69557, 165887, 262151, 358481, 817153, 952319, 1048583, 3704737, 3932167, 4518071, 12582919, 17305417, 17367019, 50069497, 50593799, 87228517
OFFSET
1,1
LINKS
Jon E. Schoenfield, Magma program (computes first 36 terms).
MATHEMATICA
a = {3}; k = 2; Monitor[Do[While[Or[! Apply[CoprimeQ, Join[a, {k}]], AnyTrue[Map[Log2 @* Total@ Append[#, k] &, Subsets[a]], IntegerQ]], k++]; AppendTo[a, k]; k++, {i, 16}], {i, k}]; a (* Michael De Vlieger, Jun 14 2023 *)
PROG
(Python)
from math import gcd
from itertools import count, islice
def agen(): # generator of terms
a, ss, pows2, m = [], set(), {1, 2}, 2
for k in count(1):
if k in pows2: continue
elif k > m: m <<= 1; pows2.add(m)
if any(p2-k in ss for p2 in pows2): continue
if any(gcd(ai, k) != 1 for ai in a): continue
a.append(k); yield k
ss |= {k} | {k+si for si in ss if k+si not in ss}
while m < max(ss): m <<= 1; pows2.add(m)
print(list(islice(agen(), 30))) # Michael S. Branicky, Jun 09 2023
CROSSREFS
Cf. A353889.
Sequence in context: A238506 A308169 A343225 * A276117 A105135 A225552
KEYWORD
nonn
EXTENSIONS
a(23)-a(33) from Michael S. Branicky, Jun 07 2023
a(34)-a(39) from Jon E. Schoenfield, Jun 09 2023
STATUS
approved