OFFSET
0,3
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined as follows.
(1) A(x) = log(1 - (1/3)*log(1-3*x)).
(2) a(n) = (-1)^(n-1) * Sum_{k=1..n} 3^(n-k) * (k-1)! * Stirling1(n, k) for n > 0.
(3) a(n) = 3^(n-1)*(n-1)! - Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * 3^(k-1) * a(n-k) for n > 0.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 11*x^3/3! + 93*x^4/4! + 1068*x^5/5! + 15486*x^6/6! + 271206*x^7/7! + 5566086*x^8/8! + 130982328*x^9/9! + ...
where
exp(A(x)) = 1 + x + 3*x^2/2 + 9*x^3/3 + 27*x^4/4 + 81*x^5/5 + ... + 3^(n-1)*x^n/n + ...
PROG
(PARI) {a(n) = n!*polcoeff( log((1 - (1/3)*log(1-3*x +x*O(x^n) ))), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = (-1)^(n-1) * sum(k=1, n, 3^(n-k) * (k-1)! * stirling(n, k, 1) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = if (n<1, 0, 3^(n-1)*(n-1)! - sum(k=1, n-1, binomial(n-1, k)*(k-1)! * 3^(k-1) * a(n-k)))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 09 2023
STATUS
approved