login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363116
Expansion of e.g.f. log(1 - (1/3)*log(1-3*x)).
1
0, 1, 2, 11, 93, 1068, 15486, 271206, 5566086, 130982328, 3476230344, 102709363392, 3343387479840, 118880973126576, 4584247231485312, 190548125567321328, 8492669888285758896, 404023626910206388224, 20434095445804056842112, 1094849162137482139541376
OFFSET
0,3
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined as follows.
(1) A(x) = log(1 - (1/3)*log(1-3*x)).
(2) a(n) = (-1)^(n-1) * Sum_{k=1..n} 3^(n-k) * (k-1)! * Stirling1(n, k) for n > 0.
(3) a(n) = 3^(n-1)*(n-1)! - Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * 3^(k-1) * a(n-k) for n > 0.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 11*x^3/3! + 93*x^4/4! + 1068*x^5/5! + 15486*x^6/6! + 271206*x^7/7! + 5566086*x^8/8! + 130982328*x^9/9! + ...
where
exp(A(x)) = 1 + x + 3*x^2/2 + 9*x^3/3 + 27*x^4/4 + 81*x^5/5 + ... + 3^(n-1)*x^n/n + ...
PROG
(PARI) {a(n) = n!*polcoeff( log((1 - (1/3)*log(1-3*x +x*O(x^n) ))), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = (-1)^(n-1) * sum(k=1, n, 3^(n-k) * (k-1)! * stirling(n, k, 1) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = if (n<1, 0, 3^(n-1)*(n-1)! - sum(k=1, n-1, binomial(n-1, k)*(k-1)! * 3^(k-1) * a(n-k)))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 09 2023
STATUS
approved