OFFSET
1,6
COMMENTS
We can take the coordinates of a vertex to represent a binary number, so we define the n-th point to have coordinates represented by the binary expansion of n-1.
Let d(m) = a(m+1) - a(m) be the shifted first differences of a(n), so that d(m) represents the additional squares introduced by the (m+1)-th vertex. Then d(0) = d(2^x) = 0; when m = 2^x + 2^y, x > y, d(m) = A115990(x - 1, x - y - 1); generally, d(m) = sum d(k) for all k formed by selecting two 1's from the binary expansion of m. Thus d(7) = d(3) + d(5) + d(6).
a(n) is a lower bound for an infinite-dimensional extension of A051602. Peter Munn notes that it is not an upper bound: for example, the vertices of a regular {k-1}-simplex duplicated at unit distance in any orthogonal direction gives T_k squares from 2k+2 points, which exceeds a(n) at 6, 10 and 12 points.
FORMULA
a(2^k) = A345340(k).
EXAMPLE
The 6 points (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1) give the squares (0,0,0), (1,0,0), (0,1,0), (1,1,0) and (0,0,0), (1,0,0), (0,0,1), (1,0,1). So a(6) = 2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo van der Sanden, Jun 22 2023
STATUS
approved