login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362602
Integers in the interval [Pi*k - 1/k, Pi*k + 1/k] for some k > 0 that are numerators of convergents to 2*Pi.
0
6, 19, 44, 333, 710, 103993, 312689, 2292816, 4272943, 10838702, 80143857, 411557987, 2549491779, 14885392687, 42106686282, 1783366216531, 8958937768937, 288469374822515, 856449186698608, 5706674932067741, 12269799050834090, 30246273033735921, 133254891185777774
OFFSET
1,1
COMMENTS
Conjecture: the sequence is infinite.
MATHEMATICA
hmax=30; A046955=Join[{1}, Numerator[Convergents[2Pi, hmax]]]; a={}; For[h=2, h<=hmax, h++, k=Intersection[List[Floor[Last[x/.N[Solve[Pi*x^2 - 1 - Part[A046955, h] x == 0, x], 2*hmax]]]], List[Ceiling[Last[x/.N[Solve[Pi*x^2 + 1 - Part[A046955, h] x == 0, x], 2*hmax]]]]]; If[k!={} && Ceiling[k*Pi - 1/k] == Floor[k*Pi + 1/k], AppendTo[a, Part[A046955, h]]]]; a
CROSSREFS
Intersection of A046955 and A265735.
Sequence in context: A209403 A272707 A266938 * A299265 A005712 A299278
KEYWORD
nonn
AUTHOR
STATUS
approved