login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362568
E.g.f. satisfies A(x) = exp(x/A(x)^x).
2
1, 1, 1, -5, -23, 121, 1321, -7349, -148175, 853777, 27840241, -163354949, -7934320679, 46820981065, 3203091569497, -18833438286389, -1742847946697759, 10137524365568161, 1230956201929018465, -7042544858204663813, -1095864481054115534519
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: (x^2 / LambertW(x^2))^(1/x) = exp(LambertW(x^2) / x) = exp(x * exp(-LambertW(x^2))).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (n-k)^k * binomial(n-k-1,k)/(n-k)!.
E.g.f.: Sum_{k>=0} (-k*x + 1)^(k-1) * x^k / k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^2)))))
CROSSREFS
Cf. A361777.
Sequence in context: A151881 A229811 A359915 * A121636 A361305 A200028
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 25 2023
STATUS
approved