login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362549
Number of partitions of [n] whose blocks can be ordered such that the i-th block (except possibly the last) has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.
4
1, 1, 2, 4, 9, 23, 64, 187, 566, 1777, 5820, 19944, 71343, 264719, 1011292, 3953381, 15756609, 63945484, 264384828, 1115246518, 4806957739, 21189601861, 95516470253, 439777682222, 2064164172616, 9853934668051, 47736608806520, 234235866539512, 1162618720397931
OFFSET
0,3
LINKS
EXAMPLE
a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(2) = 2: 12, 1|2.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 9: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234, 1|23|4.
a(5) = 23: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45.
a(6) = 64: 123456, 12345|6, 12346|5, 1234|56, 12356|4, ..., 1|2356|4, 1|235|46, 16|23|45, 1|236|45, 1|23|456.
MAPLE
b:= proc(n, t) option remember; `if`(n<=t, 1,
add(b(j, t+1)*binomial(n-t, j), j=0..n-t))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30);
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 24 2023
STATUS
approved