login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362472
E.g.f. satisfies A(x) = exp(x + x^3 * A(x)^3).
4
1, 1, 1, 7, 97, 961, 10201, 177241, 3801505, 80718625, 1887205681, 52896262321, 1648697978401, 54216677033377, 1928791931034697, 75326014326206281, 3159713152034201281, 140373558362282197441, 6632746205445950124385, 333591744669464008432225
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(-3*x^3 * exp(3*x))/3) = ( -LambertW(-3*x^3 * exp(3*x))/(3*x^3) )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^3*exp(3*x))/3)))
CROSSREFS
Column k=6 of A362490.
Sequence in context: A219088 A116261 A289851 * A242377 A178005 A268706
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 21 2023
STATUS
approved