The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219088 a(n) = floor((n + 1/2)^5). 2
 0, 7, 97, 525, 1845, 5032, 11602, 23730, 44370, 77378, 127628, 201135, 305175, 448403, 640973, 894660, 1222981, 1641308, 2166998, 2819506, 3620506, 4594013, 5766503, 7167031, 8827351, 10782039, 13068609, 15727636, 18802876 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/5 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/5), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085. LINKS Clark Kimberling, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1,0,0,0,0,0,0,0,0,0,0,1,-5,10,-10,5,-1). FORMULA a(n) = [(n + 1/2)^5]. G.f.: x*(x^19 +3*x^18 +68*x^17 +106*x^16 +121*x^15 +122*x^14 +120*x^13 +118*x^12 +120*x^11 +123*x^10 +116*x^9 +123*x^8 +120*x^7 +118*x^6 +120*x^5 +122*x^4 +120*x^3 +110*x^2 +62*x +7) / ((x -1)^6*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Jan 06 2013 MATHEMATICA Table[Floor[(n + 1/2)^5], {n, 0, 100}] CROSSREFS Cf. A219085. Sequence in context: A142315 A359637 A116288 * A116261 A289851 A362472 Adjacent sequences: A219085 A219086 A219087 * A219089 A219090 A219091 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jan 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 10:38 EDT 2024. Contains 373643 sequences. (Running on oeis4.)