OFFSET
1,3
LINKS
Robert Israel, Table of n, a(n) for n = 1..2500
MAPLE
ss:= proc(n) local F, t;
F:= ifactors(n)[2];
andmap(t -> t[1] mod 4 <> 3 or t[2]::even, F)
end proc:
fibs:= map(combinat:-fibonacci, {$0..25}):
N:= max(fibs):
fib2:= {seq(seq(fibs[i]+fibs[j], i=1..j), j=1..nops(fibs))}:
sort(convert(select(t -> t <= N and ss(t), fib2), list));
MATHEMATICA
max = 150; (* max = 150 gives 1670 terms *)
Join[{0, 1}, Select[Union[Total /@ Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] && SquaresR[2, #] != 0&]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A059389 *)
PROG
(Python)
from itertools import islice
from sympy import factorint
def A362295_gen(): # generator of terms
yield from (0, 1, 2)
a = [1, 2]
while True:
b = a[-1]+a[-2]
c = a[-1]<<1
flag = True
for d in a:
n = b+d
if flag and n>=c:
if n>c:
f = factorint(c)
if all(d & 3 != 3 or f[d] & 1 == 0 for d in f):
yield c
flag = False
f = factorint(n)
if all(d & 3 != 3 or f[d] & 1 == 0 for d in f):
yield n
a.append(b)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 14 2023
STATUS
approved