login
A362200
Semiprimes k such that k+1, k+2, 2*k+1 and 2*k+3 are also semiprimes.
1
11733, 15117, 17245, 28113, 32365, 34413, 48745, 78481, 93453, 101665, 102957, 105333, 108753, 134097, 143101, 157713, 163801, 170853, 190621, 208293, 212545, 233097, 273417, 274893, 294301, 300385, 323281, 346497, 354565, 363777, 390205, 405357, 470341, 500217, 501477, 542193, 555153, 561205
OFFSET
1,1
COMMENTS
Numbers k such that 2*k+1 and 2*k+3 are both in A092192.
All terms == 1 or 33 (mod 36).
LINKS
EXAMPLE
a(3) = 17245 is a term because 17245 = 5 * 3449, 17246 = 2 * 8623, 17247 = 3 * 5749, 2 * 17245 + 1 = 34491 = 3 * 11497 and 2 * 17245 + 3 = 34493 = 17 * 2029 are all semiprimes.
MAPLE
SP:= select(t -> numtheory:-bigomega(t)=2, {$1..2*10^6}):
A:= SP intersect map(`-`, SP, 1) intersect map(`-`, SP, 2):
SPO:= select(type, SP, odd):
A:= A intersect map(t -> (t-1)/2, SPO) intersect map(t -> (t-3)/2, SPO):
sort(convert(A, list));
CROSSREFS
Sequence in context: A251347 A346276 A234863 * A250695 A250680 A045307
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Apr 10 2023
STATUS
approved