|
|
A362118
|
|
a(n) = (10^(n*(n+1)/2)-1)/9.
|
|
4
|
|
|
1, 111, 111111, 1111111111, 111111111111111, 111111111111111111111, 1111111111111111111111111111, 111111111111111111111111111111111111, 111111111111111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 111111111111111111111111111111111111111111111111111111111111111111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Concatenate 1, 11, 111, ..., 11...1 (n ones). There are n*(n+1)/2 1's in a(n).
When regarded as decimal numbers, which (if any) is the smallest prime?
Answer: All terms > 1 are composite, since 111 is composite, all triangular numbers > 3 are composite and a prime repunit must have a prime number of decimal digits (see A004023). - Chai Wah Wu, Apr 19 2023. [This result was independently obtained by Michael S. Branicky, see A362429. - N. J. A. Sloane, Apr 20 2023]
|
|
LINKS
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|