The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A362118 a(n) = (10^(n*(n+1)/2)-1)/9. 4
 1, 111, 111111, 1111111111, 111111111111111, 111111111111111111111, 1111111111111111111111111111, 111111111111111111111111111111111111, 111111111111111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 111111111111111111111111111111111111111111111111111111111111111111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Concatenate 1, 11, 111, ..., 11...1 (n ones). There are n*(n+1)/2 1's in a(n). This is a kind of unary analog of A058935, A360502, A117640, etc. When regarded as decimal numbers, which (if any) is the smallest prime? Answer: All terms > 1 are composite, since 111 is composite, all triangular numbers > 3 are composite and a prime repunit must have a prime number of decimal digits (see A004023). - Chai Wah Wu, Apr 19 2023. [This result was independently obtained by Michael S. Branicky, see A362429. - N. J. A. Sloane, Apr 20 2023] LINKS Table of n, a(n) for n=1..11. MATHEMATICA A362118[n_]:=(10^(n(n+1)/2)-1)/9; Array[A362118, 10] (* Paolo Xausa, Nov 27 2023 *) PROG (Python) def A362118(n): return 10**(n*(n+1)>>1)//9 # Chai Wah Wu, Apr 19 2023 CROSSREFS Cf. A000042, A004023, A058935, A360502, A117640, A007908. Sequence in context: A362920 A244845 A152775 * A242646 A242645 A262647 Adjacent sequences: A362115 A362116 A362117 * A362119 A362120 A362121 KEYWORD nonn AUTHOR Michael S. Branicky and N. J. A. Sloane, Apr 19 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 23:36 EDT 2024. Contains 375991 sequences. (Running on oeis4.)