login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Order array of A361993, read by descending antidiagonals.
1

%I #8 Apr 07 2023 17:38:16

%S 1,2,4,3,6,7,5,10,11,8,9,16,18,14,12,15,26,29,23,19,13,24,42,46,38,31,

%T 22,17,39,68,74,62,50,36,28,20,63,110,119,100,81,59,45,32,21,102,111,

%U 192,101,131,97,73,52,35,25,165,179,310,162,212,158,118,84

%N Order array of A361993, read by descending antidiagonals.

%C This array is an interspersion (hence a dispersion, as in A114537 and A163255), so every positive integer occurs exactly once. See A333029 for the definition of order array.

%e Corner:

%e 1 2 3 5 9 15 24 ...

%e 4 6 10 16 26 42 68 ...

%e 7 11 18 29 46 74 119 ...

%e 8 14 23 38 62 100 162 ...

%e 12 19 31 50 81 131 212 ...

%e 13 22 36 59 97 158 191 ...

%e ...

%t zz = 300; z = 40;

%t w[n_, k_] := w[n, k] = Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];

%t b[h_, k_] := b[h, k] = w[2 h - 1, k] + w[2 h, k];

%t s = Flatten[Table[b[h, k], {h, 1, zz}, {k, 1, z}]];

%t r[h_, k_] := Length[Select[s, # <= b[h, k] &]]

%t TableForm[Table[r[h, k], {h, 1, 50}, {k, 1, 12}]] (*A351995, array*)

%t v = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A351995, sequence*)

%Y Cf. A114537, A163255, A333029, A361993, A361996.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Apr 05 2023