OFFSET
1,1
COMMENTS
We begin with a definition. Suppose that W = (w(i,j)), where i >= 1 and j >= 1, is an array of numbers such that if m and n satisfy 1 <= m < n, then there exists k such that w(m,k+h) < w(n,h+1) < w(m,k+h+1) for every h >= 0 . Then W is a row-splitting array. The array B(2,2) is a row-splitting array. The rows and columns of B(2,2) are linearly recurrent with signature (3,-3,1). It appears that the order array (as defined in A333029) of B(2,2) is given by A000027.
FORMULA
B(2,2) = (b(i,j)), where b(i,j) = w(2i-1,2j-1) + w(2i-1,2j) + w(2i,2j-1) + w(2i, 2j) for i >= 1, j >=1, where (w(i,j)) is the natural number array (A000027).
b(i,j) = 8(i+j)^2 - 12i - 20 j + 11.
EXAMPLE
Corner of B(2,2):
11 31 67 119 187 271
39 75 127 195 279 379
83 135 203 287 387 503
143 211 295 395 511 643
219 303 403 519 651 799
MATHEMATICA
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 01 2023
STATUS
approved