login
A361925
Infinitary phi-practical (A361922) whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).
1
1, 3, 12, 15, 60, 105, 108, 132, 156, 165, 195, 240, 255, 660, 960, 1020, 1140, 1155, 1188, 1380, 1680, 1716, 1728, 1740, 1785, 1860, 1995, 2052, 2145, 2220, 2244, 2415, 2460, 2484, 2496, 2508, 2580, 2640, 2652, 2805, 2820, 2940, 3036, 3045, 3120, 3132, 3135, 3180
OFFSET
1,2
COMMENTS
An infinitary phi-practical number k is a number k such that each number in the range 1..k is a subsum of the multiset {iphi(d) | d infinitary divisor of k}. This sequence is restricted to cases in which all the values in this multiset are distinct.
LINKS
MATHEMATICA
f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
iPhiPracticalQ[n_] := Module[{s = Sort@Map[iphi, idivs[n]], ans = True}, Do[If[s[[j]] > Sum[s[[i]], {i, 1, j - 1}] + 1, ans = False; Break[]], {j, 1, Length[s]}]; ans];
Select[Range[3200], UnsameQ @@ iphi /@ idivs[#] && iPhiPracticalQ[#] &]
CROSSREFS
Intersection of A361922 and A361924.
Cf. A091732.
Similar sequences: A359417, A359418.
Sequence in context: A005392 A001196 A330941 * A096854 A013191 A332959
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 30 2023
STATUS
approved