OFFSET
1,2
COMMENTS
An infinitary phi-practical number k is a number k such that each number in the range 1..k is a subsum of the multiset {iphi(d) | d infinitary divisor of k}. This sequence is restricted to cases in which all the values in this multiset are distinct.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
MATHEMATICA
f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
iPhiPracticalQ[n_] := Module[{s = Sort@Map[iphi, idivs[n]], ans = True}, Do[If[s[[j]] > Sum[s[[i]], {i, 1, j - 1}] + 1, ans = False; Break[]], {j, 1, Length[s]}]; ans];
Select[Range[3200], UnsameQ @@ iphi /@ idivs[#] && iPhiPracticalQ[#] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 30 2023
STATUS
approved