login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361657
Constant term in the expansion of (1 + x^2 + y^2 + 1/(x*y))^n.
4
1, 1, 1, 1, 13, 61, 181, 421, 1261, 5293, 21421, 73261, 232321, 789361, 2954953, 11127481, 39961741, 139908301, 499315501, 1835933293, 6792310153, 24827506873, 90058277233, 328509505633, 1210097040769, 4473191880961, 16495696956961, 60721903812961
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} 1/(k!^2 * (2*k)! * (n-4*k)!) = Sum_{k=0..floor(n/4)} binomial(n,4*k) * A000897(k).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: (n-2)*n^2*a(n) = (4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-1)*(6*n^2 - 18*n + 13)*a(n-2) + 4*(n-2)^2*(n-1)*a(n-3) + 63*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ (1 + 2*sqrt(2))^(n+1) / (4*Pi*n). (End)
MATHEMATICA
Table[n!*Sum[1/(k!^2*(2*k)!*(n - 4*k)!), {k, 0, n/4}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\4, 1/(k!^2*(2*k)!*(n-4*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2023
STATUS
approved