login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361551
Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n (x^(5*n) * A(x)^n) / n!.
7
1, 5, 90, 2535, 93840, 4226355, 222038775, 13259599965, 884588496165, 65114097133590, 5239173990133060, 457392343670390700, 43064135370809341250, 4350264113638902544555, 469422682906897831519170, 53897717818214315584719430, 6561919113715122121302125775
OFFSET
0,2
COMMENTS
Conjecture: If r>=2 and s>=1 and A(x) = Sum_{n>=0} d^n/dx^n x^(r*n) * A(x)^(s*n) / n!, then a(n) ~ c(r,s) * n! * n^alpha(r,s) * ((r-1)/LambertW(1/s))^n, where alpha(r,s) = ((2*s+1)*LambertW(1/s) + 1 + 1/(1 + LambertW(1/s))) * r/(2*(r-1)) - 1 and c(r,s) is a constant independent on n. - Vaclav Kotesovec, Mar 16 2023
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^(4*n) may be defined by the following.
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(5*n) * A(x)^n / n!.
(2) A(x) = d/dx Series_Reversion(x - x^5*A(x)).
(3) B(x - x^5*A(x)) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(5*n-1) * A(x)^n / n! ) is the g.f. of A361311.
(4) a(n) = (4*n+1) * A361311(n+1) for n >= 0.
a(n) ~ c * 4^n * n! * n^((15*LambertW(1) - 3 + 5/(1 + LambertW(1)))/8) / LambertW(1)^n, where c = 0.438413009716541247480505206... - Vaclav Kotesovec, Mar 16 2023
EXAMPLE
G.f.: A(x) = 1 + 5*x^4 + 90*x^8 + 2535*x^12 + 93840*x^16 + 4226355*x^20 + 222038775*x^24 + 13259599965*x^28 + ... + a(n)*x^(4*n) + ...
where
A(x) = 1 + (d/dx x^5*A(x)) + (d^2/dx^2 x^10*A(x)^2)/2! + (d^3/dx^3 x^15*A(x)^3)/3! + (d^4/dx^4 x^20*A(x)^4)/4! + (d^5/dx^5 x^25*A(x)^5)/5! + ... + (d^n/dx^n x^(5*n)*A(x)^n)/n! + ...
Related series.
Let B(x) = Series_Reversion(x - x^5*A(x)), which begins
B(x) = x + x^5 + 10*x^9 + 195*x^13 + 5520*x^17 + 201255*x^21 + 8881551*x^25 + ... + A361311(n+1)*x^(4*n+1) + ...
then A(x) = B'(x) and
B(x) = x * exp( x^4*A(x) + (d/dx x^9*A(x)^2)/2! + (d^2/dx^2 x^14*A(x)^3)/3! + (d^3/dx^3 x^19*A(x)^4)/4! + (d^4/dx^4 x^24*A(x)^5)/5! + ... + (d^(n-1)/dx^(n-1) x^(5*n-1)*A(x)^n)/n! + ... ).
MATHEMATICA
nmax = 20; r = 5; s = 1; A[_] = 0; Do[A[x_] = D[Normal[InverseSeries[x - x^r*A[x]^s + O[x]^k]], x], {k, 1, (r-1)*(nmax+1)+r}]; Table[CoefficientList[A[x], x][[j]], {j, 1, (r-1)*(nmax+1), r-1}] (* Vaclav Kotesovec, Mar 16 2023 *)
PROG
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(5*m)*A^(1*m)/m!)) +O(x^(4*n+1))); polcoeff(A, 4*n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Using series reversion (faster) */
{a(n) = my(A=1); for(i=1, n, A = deriv( serreverse(x - x^5*A^1 +O(x^(4*n+2))))); polcoeff(A, 4*n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 15 2023
STATUS
approved