login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361487
Odd numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).
1
75, 135, 147, 189, 225, 245, 363, 375, 405, 441, 507, 525, 567, 605, 675, 735, 825, 845, 847, 867, 875, 891, 945, 975, 1029, 1053, 1083, 1089, 1125, 1183, 1215, 1225, 1275, 1323, 1375, 1377, 1425, 1445, 1485, 1521, 1539, 1575, 1587, 1617, 1625, 1701, 1715, 1725, 1755, 1805, 1815, 1859, 1863, 1875, 1911
OFFSET
1,1
COMMENTS
Odd terms in A360768, which itself is a proper subsequence of A126706.
Odd numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.
LINKS
Michael De Vlieger, 1020 pixel square bitmap of indices n = 1..1040400, read left to right, top to bottom, such that A360768(n) in this sequence appears in black, else white. There is a faint pattern apparently related to that mentioned in A360768.
Michael De Vlieger, Chart showing k < a(n), n = 1..36, rows n contain k such that rad(k) = rad(n), yet k does not divide n. These k are in A360769, the number of k in row a(n) given by A355432(a(n)).
FORMULA
This sequence is { odd k in A126706 : k/A007947(k) >= A119288(k) }.
EXAMPLE
a(1) = 75, since 75/15 >= 5. We note that rad(45) = rad(75) = 15, yet 45 does not divide 75.
a(2) = 135, since 135/15 >= 5. Note: rad(75) = rad(135) = 15, yet 45 does not divide 135.
a(3) = 147, since 147/21 >= 7. Note: rad(63) = rad(147) = 21, yet 147 mod 63 = 21.
Chart below shows k < a(n) such that rad(k) = rad(n), yet k does not divide n:
75 | 45 .
135 | . . 75 . .
147 | . 63 . . . .
189 | . . . . . . 147 . . .
a(n) 225 | . . . . . 135 . . . . . .
245 | . . . . . . . . . 175 . . .
363 | . . . 99 . . . . . . . . . . . . . 297
375 | 45 . . . . 135 . . . . . . 225 . . . . .
----------------------------------------------------------------------------
| 45 63 75 99 117 135 147 153 171 175 189 207 225 245 261 275 279 297
k in A360769
MATHEMATICA
Select[Select[Range[1, 2000, 2], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
PROG
(PARI) is(k) = { if (k%2, my (f = factor(k)); #f~ > 1 && k/vecprod(f[, 1]~) >= f[2, 1], 0); } \\ Rémy Sigrist, Mar 29 2023
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Mar 29 2023
STATUS
approved