login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361355
Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n.
4
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 15, 1, 0, 0, 0, 0, 75, 1, 0, 0, 0, 0, 735, 280, 1, 0, 0, 0, 0, 0, 9345, 938, 1, 0, 0, 0, 0, 0, 76545, 77805, 2989, 1, 0, 0, 0, 0, 0, 0, 1865745, 536725, 9285, 1, 0, 0, 0, 0, 0, 0, 13835745, 27754650, 3334870, 28446, 1, 0
OFFSET
1,13
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023.
Nicholas Proudfoot, Yuan Xu, and Ben Young, On the enumeration of series-parallel matroids, arXiv:2406.04502 [math.CO], 2024.
FORMULA
E.g.f.: A(x,y) = log(1 + B(x,y)) where B(x,y) is the e.g.f. of A361353.
E.g.f.: A(x,y) = log(B(log(1 + x), y)/(1 + x)) where B(x,y) is the e.g.f. of A359985.
T(2*n+1, n+1) = A034941(n).
T(2*n, n+1) = A361282(n).
EXAMPLE
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 0, 1, 0;
0, 0, 15, 1, 0;
0, 0, 0, 75, 1, 0;
0, 0, 0, 735, 280, 1, 0;
0, 0, 0, 0, 9345, 938, 1, 0;
0, 0, 0, 0, 76545, 77805, 2989, 1, 0;
...
PROG
(PARI) \\ B gives A359985 as e.g.f.
B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
T(n) = {my(v=Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))); vector(#v, n, Vecrev(v[n]/y, n))}
{ my(A=T(9)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A007834.
Sequence in context: A370335 A333845 A015908 * A366146 A040228 A040229
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 09 2023
STATUS
approved