The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A361215 Intersection of A361073 and 2 * A361611. 2
 8, 20, 50, 1406, 1516, 1558, 1868, 1898, 1948, 1978, 1986, 5862, 5972, 6014, 7122, 7966, 7996, 8270, 8348, 8366, 8548, 8618, 21092, 31804, 31822, 32158, 33092, 33162, 33316, 33414, 37124, 37190, 37292, 37394, 39164, 39214, 39316, 39346, 39484, 39562, 39604, 39622, 39692, 39794, 45044, 45244 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If A361073(j) = 2*A361611(k) then x = 2*A361611(k+1) has the property that x, x - A361073(j) and x + A361073(j) are triprimes, so x >= A361073(j+1), with equality if and only if A361073(j+1) is even. LINKS Robert Israel, Table of n, a(n) for n = 1..2900 EXAMPLE a(4) = 1406 is a term because 1406 = A361073(20) = 2*A361611(17). MAPLE A:= {8}: lasta:= 8: for i from 2 to 1000 do for x from lasta+8 do if numtheory:-bigomega(x) = 3 and numtheory:-bigomega(x-lasta) = 3 and numtheory:-bigomega(x+lasta) = 3 then A:= A union {x}; lasta:= x; break fi od od: R:= {8}: lastb:= 4: while 2*lastb < lasta do for x from lastb+4 do if numtheory:-bigomega(x) = 2 and numtheory:-bigomega(x-lastb) = 2 and numtheory:-bigomega(x+lastb) = 2 then if member(2*x, A) then R:= R union {2*x} fi; lastb:= x; break fi od od: sort(convert(R, list)); CROSSREFS Cf. A361073, A361611. Sequence in context: A169878 A107816 A361073 * A205219 A232401 A036835 Adjacent sequences: A361212 A361213 A361214 * A361216 A361217 A361218 KEYWORD nonn AUTHOR Zak Seidov and Robert Israel, Apr 09 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)