The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A361213 E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1+x) ). 2
1, 2, 8, 68, 848, 14192, 298048, 7546016, 223792640, 7612381952, 292216807424, 12497875215872, 589392367925248, 30386736933804032, 1700376343771136000, 102641314849948602368, 6648428846464054919168, 459977466799800897437696 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = (-1)^n * n! * Sum_{k=0..n} (-2)^k * (k+1)^(k-1) * binomial(n-1,n-k)/k!.
E.g.f.: exp ( -LambertW(-2*x/(1+x)) ).
E.g.f.: -(1+x)/(2*x) * LambertW(-2*x/(1+x)).
a(n) ~ (2*exp(1) - 1)^(n + 1/2) * n^(n-1) / (sqrt(2) * exp(n - 1/2)). - Vaclav Kotesovec, Nov 10 2023
PROG
(PARI) a(n) = (-1)^n*n!*sum(k=0, n, (-2)^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1+x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1+x)/(2*x)*lambertw(-2*x/(1+x))))
CROSSREFS
Sequence in context: A053922 A030445 A093990 * A156448 A262479 A372315
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 04 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)