login
A361199
a(1) = 1, a(2) = 2; for n >=3, a(n) is the number of primes in a(n-1), a(n-1) + a(n-2), ..., a(n-1) + a(n-2) + ... + a(1).
3
1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 7, 2, 3, 7, 3, 5, 3, 7, 3, 7, 4, 4, 1, 10, 9, 2, 5, 7, 6, 4, 4, 5, 11, 8, 6, 2, 4, 7, 15, 6, 5, 10, 12, 9, 7, 11, 7, 14, 9, 8, 7, 16, 11, 9, 11, 10, 8, 7, 11, 13, 13, 9, 15, 9, 13, 14, 7, 15, 9, 12, 14, 15, 5, 13, 12, 6, 12, 9, 15
OFFSET
1,2
LINKS
EXAMPLE
a(10) = 3 because three primes result from the adding up process, visualized below. These are 2, 7 and 17.
. Prime P/ Prime
a(1) a(2) a(3) a(4) a(5) a(6) a(7) a(8) a(9) Composite C Count
.
2 = 2 P 1
2 + 2 = 4 C 0
3 + 2 + 2 = 7 P 1
1 + 3 + 2 + 2 = 8 C 0
2 + 1 + 3 + 2 + 2 = 10 C 0
2 + 2 + 1 + 3 + 2 + 2 = 12 C 0
2 + 2 + 2 + 1 + 3 + 2 + 2 = 14 C 0
2 + 2 + 2 + 2 + 1 + 3 + 2 + 2 = 16 C 0
1 + 2 + 2 + 2 + 2 + 1 + 3 + 2 + 2 = 17 P 1
+ _____
a(10) = 3
.
MAPLE
A[1]:= 1: A[2]:= 2: S:= [0, 1, 3]:
for n from 3 to 100 do
A[n]:= nops(select(isprime, map(t -> S[n]-t, S[1..n-1])));
S:= [op(S), A[n]+S[-1]]
od:
seq(A[i], i=1..100); # Robert Israel, Mar 22 2023
MATHEMATICA
a[1] = 1; a[2] = 2; a[n_] := a[n] = Count[Accumulate[Table[a[i], {i, n - 1, 1, -1}]], _?PrimeQ]; Array[a, 100] (* Amiram Eldar, Mar 04 2023 *)
PROG
(PARI) lista(nn) = my(va=vector(nn)); va[1] = 1; va[2] = 2; for (n=3, nn, my(s=0, nb=0); for (k=1, n-1, s += va[n-k]; if (isprime(s), nb++); ); va[n] = nb; ); va; \\ Michel Marcus, Mar 04 2023
(Python)
from sympy import isprime
from itertools import islice
def agen(): # generator of terms
an, sums = 2, [1]
yield 1
while True:
yield an
sums = [s + an for s in sums] + [an]
an = sum(1 for s in sums if isprime(s))
print(list(islice(agen(), 80))) # Michael S. Branicky, Mar 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Tamas Sandor Nagy, Mar 04 2023
STATUS
approved