login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the asymptotic mean of A286324(k)/A000005(k), the ratio between the number of bi-unitary divisors and the number of divisors.
3

%I #5 Mar 01 2023 02:39:34

%S 9,0,1,2,4,1,8,0,6,8,2,6,4,8,2,2,5,5,1,3,9,1,9,7,4,8,5,0,9,4,3,8,7,5,

%T 5,8,9,8,2,8,1,1,5,3,3,8,2,1,7,8,7,6,2,8,7,6,2,6,1,6,1,2,0,6,3,0,9,0,

%U 7,3,4,3,7,3,3,1,8,6,0,8,3,7,9,3,6,3,5,5,9,5,4,0,8,6,0,1,0,5,2,4,5,6,4,9,8

%N Decimal expansion of the asymptotic mean of A286324(k)/A000005(k), the ratio between the number of bi-unitary divisors and the number of divisors.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BiunitaryDivisor.html">Biunitary Divisor</a>.

%F Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A286324(k)/A000005(k).

%F Equals Product_{p prime} (2 - 1/p - (p-1)*log((p+1)/(p-1))/2).

%e 0.901241806826482255139197485094387558982811533821787...

%t $MaxExtraPrecision = 1000; m = 1000; f[p_] := 2 - 1/p - (p - 1)*Log[(p + 1)/(p - 1)]/2; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n], {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

%Y Cf. A000005, A286324, A361059 (mean of the inverse ratio).

%Y Cf. A307869, A308043 (unitary analog).

%K nonn,cons

%O 0,1

%A _Amiram Eldar_, Mar 01 2023