OFFSET
0,1
COMMENTS
Row 0 of square array A361027.
The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that A000984(n) is divisible by n + 1 and the result (2*n)!/(n!*(n+1)!) is the n-th Catalan number A000108(n). Similarly, the de Bruijn numbers A006480(n) = (3*n)!/n!^3 have the property that 2*A006480(n) is divisible by (n+1)^2, leading to the present sequence. Do these numbers have a combinatorial interpretation?
FORMULA
a(n) = (2/(n+1)^2) * (3*n)!/n!^3.
a(n) = (1/3)*27^(n+1)*binomial(1/3, n+1)*binomial(2/3, n+1).
a(n) = 2*C(2*n,n)*C(3*n,n) - 3*C(2*n,n+1)*C(3*n,2*n) + 2*C(2*n,n)*C(3*n,2*n+2) + 2*C(2*n,n+1)*C(3*n,2*n+2). This formula shows that a(n) is an integer for all n.
a(n) ~ sqrt(3)*27^n/(Pi*n^3).
P-recursive: (n + 1)^2*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 2.
The o.g.f. A(x) satisfies the differential equation
x^2*(1 - 27*x)*A''(x) + x*(3 - 54*x)*A'(x) + (1 - 6*x)*A(x) - 2 = 0, with
A(0) = 2 and A'(0) = 3.
MAPLE
a := proc(n) option remember; if n = 0 then 2 else 3*(3*n-1)*(3*n-2)/ (n+1)^2*a(n-1) end if; end proc:
seq(a(n), n = 0..20);
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Feb 28 2023
STATUS
approved