login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360760
a(n) = n^16 + n^15 + n^2 + 1.
1
1, 4, 98309, 57395638, 5368709137, 183105468776, 3291294892069, 37980492079594, 316659348799553, 2058911320946572, 11000000000000101, 50126978032987934, 200291280469622929, 716602502197270768, 2333521433367183557, 7006302246093750226, 19599665578316398849
OFFSET
0,2
COMMENTS
This polynomial over GF(2) corresponds to the cyclic redundancy check CRC-16-IBM (also called CRC-16-ANSI).
LINKS
Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
FORMULA
a(n) = n^16+n^15+n^2+1.
G.f.: (-2*x^16 - 32739*x^15 - 28140955*x^14 - 2737818249*x^13 - 71190102397*x^12 - 694379743523*x^11 - 2998872587683*x^10 - 6246647694545*x^9 - 6518950156977*x^8 - 3416093767201*x^7 - 869851294713*x^6 - 99576373427*x^5 - 4406352975*x^4 - 55724249*x^3 - 98377*x^2 + 13*x - 1)/(x - 1)^17. - Chai Wah Wu, Feb 20 2023
MATHEMATICA
Array[#^2*(#^13*(#+1)+1)+1 &, 20, 0] (* Paolo Xausa, Feb 20 2024 *)
PROG
(Python)
def A360760(n): return n**2*(n**13*(n + 1) + 1) + 1 # Chai Wah Wu, Feb 20 2023
CROSSREFS
Cf. A010933.
Sequence in context: A009529 A339450 A273231 * A239021 A193151 A034209
KEYWORD
nonn,easy
AUTHOR
Darío Clavijo, Feb 19 2023
STATUS
approved