%I #23 Feb 24 2023 01:56:42
%S 1,0,1,0,-2,1,0,1,-5,1,0,1,8,-9,1,0,2,4,29,-14,1,0,6,4,-10,75,-20,1,0,
%T 24,4,-41,-115,160,-27,1,0,120,-8,-147,-196,-490,301,-35,1,0,720,-136,
%U -624,-392,-231,-1484,518,-44,1
%N Matrix inverse of A360657.
%F Conjectured formulas:
%F 1. Matrix product of A354794 and T without column 0 equals A215534.
%F 2. Matrix product of T and A354794 without column 0 equals A132013.
%F 3. E.g.f. of column k > 0: Sum_{n >= k} T(n, k) * t^(n-1) / (n-1)! = (1 - t) * (Sum_{n >= k} A354795(n, k) * t^(n-1) / (n-1)!).
%e Triangle T(n, k) for 0 <= k <= n starts:
%e n\k : 0 1 2 3 4 5 6 7 8 9
%e =========================================================
%e 0 : 1
%e 1 : 0 1
%e 2 : 0 -2 1
%e 3 : 0 1 -5 1
%e 4 : 0 1 8 -9 1
%e 5 : 0 2 4 29 -14 1
%e 6 : 0 6 4 -10 75 -20 1
%e 7 : 0 24 4 -41 -115 160 -27 1
%e 8 : 0 120 -8 -147 -196 -490 301 -35 1
%e 9 : 0 720 -136 -624 -392 -231 -1484 518 -44 1
%e etc.
%o (PARI) tabl(m) = {my(n=2*m, A = matid(n), B, C, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); C = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); T = 1/C; }
%Y Cf. A132013, A215534, A354794, A354795, A360657 (matrix inverse).
%K sign,easy,tabl
%O 0,5
%A _Werner Schulte_, Feb 21 2023