Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 24 2023 01:56:42
%S 1,0,1,0,-2,1,0,1,-5,1,0,1,8,-9,1,0,2,4,29,-14,1,0,6,4,-10,75,-20,1,0,
%T 24,4,-41,-115,160,-27,1,0,120,-8,-147,-196,-490,301,-35,1,0,720,-136,
%U -624,-392,-231,-1484,518,-44,1
%N Matrix inverse of A360657.
%F Conjectured formulas:
%F 1. Matrix product of A354794 and T without column 0 equals A215534.
%F 2. Matrix product of T and A354794 without column 0 equals A132013.
%F 3. E.g.f. of column k > 0: Sum_{n >= k} T(n, k) * t^(n-1) / (n-1)! = (1 - t) * (Sum_{n >= k} A354795(n, k) * t^(n-1) / (n-1)!).
%e Triangle T(n, k) for 0 <= k <= n starts:
%e n\k : 0 1 2 3 4 5 6 7 8 9
%e =========================================================
%e 0 : 1
%e 1 : 0 1
%e 2 : 0 -2 1
%e 3 : 0 1 -5 1
%e 4 : 0 1 8 -9 1
%e 5 : 0 2 4 29 -14 1
%e 6 : 0 6 4 -10 75 -20 1
%e 7 : 0 24 4 -41 -115 160 -27 1
%e 8 : 0 120 -8 -147 -196 -490 301 -35 1
%e 9 : 0 720 -136 -624 -392 -231 -1484 518 -44 1
%e etc.
%o (PARI) tabl(m) = {my(n=2*m, A = matid(n), B, C, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); C = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); T = 1/C; }
%Y Cf. A132013, A215534, A354794, A354795, A360657 (matrix inverse).
%K sign,easy,tabl
%O 0,5
%A _Werner Schulte_, Feb 21 2023