login
A360753
Matrix inverse of A360657.
1
1, 0, 1, 0, -2, 1, 0, 1, -5, 1, 0, 1, 8, -9, 1, 0, 2, 4, 29, -14, 1, 0, 6, 4, -10, 75, -20, 1, 0, 24, 4, -41, -115, 160, -27, 1, 0, 120, -8, -147, -196, -490, 301, -35, 1, 0, 720, -136, -624, -392, -231, -1484, 518, -44, 1
OFFSET
0,5
FORMULA
Conjectured formulas:
1. Matrix product of A354794 and T without column 0 equals A215534.
2. Matrix product of T and A354794 without column 0 equals A132013.
3. E.g.f. of column k > 0: Sum_{n >= k} T(n, k) * t^(n-1) / (n-1)! = (1 - t) * (Sum_{n >= k} A354795(n, k) * t^(n-1) / (n-1)!).
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=========================================================
0 : 1
1 : 0 1
2 : 0 -2 1
3 : 0 1 -5 1
4 : 0 1 8 -9 1
5 : 0 2 4 29 -14 1
6 : 0 6 4 -10 75 -20 1
7 : 0 24 4 -41 -115 160 -27 1
8 : 0 120 -8 -147 -196 -490 301 -35 1
9 : 0 720 -136 -624 -392 -231 -1484 518 -44 1
etc.
PROG
(PARI) tabl(m) = {my(n=2*m, A = matid(n), B, C, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); C = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); T = 1/C; }
CROSSREFS
Cf. A132013, A215534, A354794, A354795, A360657 (matrix inverse).
Sequence in context: A293024 A292948 A210872 * A292973 A220235 A066603
KEYWORD
sign,easy,tabl
AUTHOR
Werner Schulte, Feb 21 2023
STATUS
approved