login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360753
Matrix inverse of A360657.
1
1, 0, 1, 0, -2, 1, 0, 1, -5, 1, 0, 1, 8, -9, 1, 0, 2, 4, 29, -14, 1, 0, 6, 4, -10, 75, -20, 1, 0, 24, 4, -41, -115, 160, -27, 1, 0, 120, -8, -147, -196, -490, 301, -35, 1, 0, 720, -136, -624, -392, -231, -1484, 518, -44, 1
OFFSET
0,5
FORMULA
Conjectured formulas:
1. Matrix product of A354794 and T without column 0 equals A215534.
2. Matrix product of T and A354794 without column 0 equals A132013.
3. E.g.f. of column k > 0: Sum_{n >= k} T(n, k) * t^(n-1) / (n-1)! = (1 - t) * (Sum_{n >= k} A354795(n, k) * t^(n-1) / (n-1)!).
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=========================================================
0 : 1
1 : 0 1
2 : 0 -2 1
3 : 0 1 -5 1
4 : 0 1 8 -9 1
5 : 0 2 4 29 -14 1
6 : 0 6 4 -10 75 -20 1
7 : 0 24 4 -41 -115 160 -27 1
8 : 0 120 -8 -147 -196 -490 301 -35 1
9 : 0 720 -136 -624 -392 -231 -1484 518 -44 1
etc.
PROG
(PARI) tabl(m) = {my(n=2*m, A = matid(n), B, C, T); for( i = 2, n, for( j = 2, i, A[i, j] = A[i-1, j-1] + j * A[i-1, j] ) ); B = A^(-1); C = matrix( m, m, i, j, if( j == 1, 0^(i-1), sum( r = 0, i-j, B[i-j+1, r+1] * A[i-1+r, i-1] ) ) ); T = 1/C; }
CROSSREFS
Cf. A132013, A215534, A354794, A354795, A360657 (matrix inverse).
Sequence in context: A293024 A292948 A210872 * A292973 A220235 A066603
KEYWORD
sign,easy,tabl
AUTHOR
Werner Schulte, Feb 21 2023
STATUS
approved